The Effects of Music on the Brain: Investigating Music Preference Using Network Science Methods

Robin Wilkins1,2, Matthew Steen1, Paul Laurienti1, Jonathan Burdette1, Donald Hodges2

1Laboratory for Complex Brain Networks, Wake Forest University, Winston-Salem, NC,
2Music Research Institute, University of North Carolina Greensboro

Introduction

Within the brain, music affects an intricate set of complex neural processing systems. Music has been shown to affect systems and structural components associated with sensory motor processing, as well as emotional and functional elements implicated in memory, cognition and mood fluctuation. Network science, based on graph theory, provides a method for studying the brain as a complex, dynamic system. Because of the vast complexity of music processing within the brain, it is an ideal candidate for network science. Using network science methods and entire songs, we were able to study music listening as people actually experience it. We investigated whether music preference influences connectivity within the brain.

Scanning Procedure

- Subjects with eyes closed were scanned at rest while listening to five (5) entire songs from pseudorandomly presented genres of classical, country, rock, rap, unfamiliar and a personal favorite
- 1.5T GE scanner using an 8-channel head coil (GE Med Systems, Milwaukee, WI)
- Anatomic imaging (3D BRAVO), and resting fMRI (EPI, TR2000, TE40, voxel size 3.75mm x 3.75mm x 5mm) was used to generate a 21,000 X 21,000 voxel matrix.

Network Pipeline

1. FMRI Time Series
2. Correlation Matrix
3. Adjacency Matrix
4. Functional Network
5. Modularity Analysis

Network Metrics

- Degree (k) measures the connectedness of a node
- Path length is a scaled measure of global efficiency. Short path offers more efficient, faster communication within a network.
- Hubs are the most connected nodes in a network. These nodes are critical for network stability and information flow.

Conclusions

- Music that is liked or disliked resulted in quite different connectivity in the precuneus/posterior cingulate, the core of the default mode network (DMN).
- While listening to preferred music the precuneus showed high degree (high connectivity).
- When listening to music that is not preferred the precuneus has relatively high degree, but dramatically decreased global connectivity.
- The precuneus has differential connectivity between preferred and non-preferred music.
- This connectivity between the precuneus/posterior cingulate (of the DMN) and the superior frontal gyrus may be related to how individuals, either consciously or unconsciously, self-regulate the emotions they have and how they experience and express them.

Study Population

- Volunteer group of adults (N=21, 13 male, 8 female)
- Age = 24 +/- 3.44 years
- Five Individuals were selected that each had a top preference for either classical, country, and rap/hip hop music and six that had a preference for rock music.

Supported by: The Music Research Institute of The University of North Carolina Greensboro, the Laboratory for Complex Brain Networks of Wake Forest University Health Sciences and the Translational Science Center of Wake Forest University, Reynolda Campus